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Abstract 
Storage management is one of the most important enabling technologies for large-scale scientific investigations.  
Having to deal with multiple heterogeneous storage and file systems is one of the major bottlenecks in managing, 
replicating, and accessing files in distributed environments.  Storage Resource Managers (SRMs), named after their 
web services control protocol, provide the technology needed to manage the rapidly growing distributed data 
volumes, as a result of faster and larger computational facilities.  SRMs are Grid storage services providing 
interfaces to storage resources, as well as advanced functionality such as dynamic space allocation and file 
management on shared storage systems.  They call on transport services to bring files into their space transparently 
and provide effective sharing of files. SRMs are based on a common specification that emerged over time and 
evolved into an international collaboration.  This approach of an open specification that can be used by various 
institutions to adapt to their own storage systems has proven to be a remarkable success – the challenge has been to 
provide a consistent homogeneous interface to the Grid, while allowing sites to have diverse infrastructures.  In 
particular, supporting optional features while preserving interoperability is one of the main challenges we describe 
in this paper.  We also describe using SRM in a large international High Energy Physics collaboration, called 
WLCG, to prepare to handle the large volume of data expected when the Large Hadron Collider (LHC) goes online 
at CERN.  This intense collaboration led to refinements and additional functionality in the SRM specification, and 
the development of multiple interoperating implementations of SRM for various complex multi-component storage 
systems. 
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1. Introduction and Overview 
Increases in computational power have created the 
opportunity for new, more precise and complex 
scientific simulations leading to new scientific 
insights.  Similarly, large experiments generate ever 
increasing volumes of data.  At the data generation 
phase, large volumes of storage have to be allocated 
for data collection and archiving.  At the data 
analysis phase, storage needs to be allocated to bring 
a subset of the data for exploration, and to store the 
subsequently generated data products.  Furthermore, 
storage systems shared by a community of scientists 
need a common data access mechanism which 

allocates storage space dynamically, manages stored 
content, and automatically remove unused data to 
avoid clogging data stores. 
When dealing with storage, the main problems facing 
the scientist today are the need to interact with a 
variety of storage systems and to pre-allocate storage 
to ensure data generation and analysis tasks can take 
place.  Typically, each storage system provides 
different interfaces and security mechanisms.  There 
is an urgent need to standardize and streamline the 
access interface, the dynamic storage allocation and 
the management of the content of these systems.  The 
goal is to present to the scientists the same interface 



regardless of the type of system being used.  Ideally, 
the management of storage allocation should become 
transparent to the scientist. 
To accommodate this need, the concept of Storage 
Resource Managers (SRMs) was devised [SSG02, 
SSG03] in the context of a project that involved High 
Energy Physics (HEP) and Nuclear Physics (NP).  
SRM is a specific set of web services protocols used 
to control storage systems from the Grid, and should 
not be confused with the more general concept of 
Storage Resource Management as used in industry.  
By extension, a Grid component providing an SRM 
interface is usually called “an SRM.” 
After recognizing the value of this concept as a way 
to interact with multiple storage systems in a uniform 
way, several Department of Energy Laboratories 
(LBNL, Fermilab, and TJNAF), as well as CERN and 
Rutherford Appleton Lab in Europe, joined forces 
and formed a collaboration that evolved into a stable 
version, called SRM v1.1, that they all adopted.  This 
led to the development of SRMs for several disk-
based systems and mass storage systems, including 
HPSS (at LBNL), Castor (at CERN), dCache/Enstore 
(at Fermilab and DESY), and JasMINE (at TJNAF).  
The interoperation of these implementations was 
demonstrated and proved an attractive concept.  
However, the functionality of SRM v1.1 was limited, 
since space was allocated by default policies, and 
there was no support for directory structures.  The 
collaboration is open to any institution willing and 
able to contribute.  For example, when INFN, the 
Italian institute for nuclear physics, started working 
on their own SRM implementation (StoRM, 
described below), they joined the collaboration.  The 
collaboration also has an official standards body, the 
Open Grid Forum, OGF, where it is registered as 
GSM-WG (GSM is Grid Storage Management; SRM 
was already taken for a different purpose). 
Subsequent collaboration efforts led to advanced 
features such as explicit space reservations, directory 
management, and support for Access Control Lists 
(ACL) to be supported by the SRM protocol, now at 
version 2.1.  As with many advanced features, it was 
optional for the implementations to support them, 
partly to be inclusive: we did not want to exclude 
implementations without specific features from 
supporting version 2.1.  This inclusiveness principle 
is a foundation for the SRM collaboration, but is a 
source of problems in writing applications and in 
testing interoperability, as we shall see below. 
Later, when a large international HEP collaboration, 
WLCG (the World-wide LHC Computing Grid) 
decided to adopt the SRM standard, it became clear 
that many concepts needed clarification, and new 

functionality was added, resulting in SRM v2.2.  
While the WLCG contribution has been substantial, 
the SRM can also be used by other Grids, such as 
those using the EGEE gLite software.  There are 
many such Grids, often collaborations between the 
EU and developing countries. Having open source 
and license-free implementations (as most of the 
implementations described in this paper are) helps 
these projects. 
In this paper, we elaborate on the process of the 
definition of the SRM v2.2 protocol and its interface 
to a variety of storage systems. Furthermore, we 
establish a methodology for the validation of the 
protocol and its implementations through families of 
test suites. Such  test suites are used on a daily basis 
to ensure inter-operation of these implementations.  
This joint international effort proved to be a 
remarkable and unique achievement, in that now 
there are multiple SRMs developed in various 
institutions around the world that interoperate.  Many 
of these SRMs have a large number of installations 
around the world.  This demonstrates the value of 
inter-operating middleware over a variety of storage 
systems. 
In section 2, we describe related work.  In Section 3 
and 4 we concentrate on the basic functionality 
exposed by SRM and the concepts that evolved from 
this international collaboration. Section 5 focuses on 
five inter-operating SRM v2.2 implementations over 
widely different storage systems, including multi-
component and mass storage systems. Section 6 
describes the validation process, and presents the 
results of interoperation tests and lessons learned 
from such tests. 

2. Related Work 
The Storage Resource Broker (SRB) [srb] is a client-
server middleware that provides uniform access for 
connecting to heterogeneous data resources over a 
wide-area network and accessing replicated data sets. 
It uses a centralized Meta Data Catalog (MCat) and 
supports archiving, caching, synchs and backups, 
third-party copy and move, version control, locking, 
pinning, aggregated data movement and a Global 
Name space (filesystem like browsing). SRB 
provides as well for collection and data abstraction 
presenting a Web Service interface. While SRB 
offers a complete storage service, in comparison, 
SRM is only the interface to storage; it is an open (in 
particular, non-proprietary) web service protocol, 
allowing storage systems to fit in as components into 
a larger data and computational Grid. 
Condor [condor] from University of Wisconsin at 
Madison is a comprehensive middleware suite, 
supporting storage natively via the Chirp protocol. 



Chirp is a remote I/O protocol that provides the 
equivalent of UNIX operations such as open(), read(), 
write(), close(). Chirp provides a variety of 
authentication methods, allowing remote users to 
identify themselves with strong Globus or Kerberos 
credentials. However, it does not offer space 
management capabilities, such as those available in 
SRM. The Chirp protocol is also used by the NeST 
component that aims to deliver guaranteed 
allocations, one of the optional features of SRM. 
However, NeST currently relies primarily on an 
underlying file system to provide access to storage. 
The Condor storage middleware suite presents some 
overlap with SRM in terms of features and intent. 
However, generally speaking the SRM protocol is 
designed mainly for managing storage spaces and 
their content and Chirp is focused on data access. 
There is some interest in interoperability between 
SRB and SRM, or between SRM and Condor.  
However, such efforts did not come to fruition since 
the effort required to do that properly outweighs the 
need, particularly since the implementations fit into 
Grids at different levels of the software stack. 
Other computational Grids use distributed file 
systems. A protocol that is gaining in popularity is 
NFSv4. It is the IETF standard for distributed file 
systems that is designed for security, extensibility, 
and high performance. The NFSv4 offers a global 
name space and provides a pseudo file system that 
enables support for replication, migration and referral 
of data. One of the attractive features of NFS4 is the 
decoupling of the data paths from the storage access 
protocol. In particular, the possibility of negotiating a 
storage access and management protocol between 
data servers would allow for SRM to play a role in 
the integration of mass storage systems in an NFSv4 
infrastructure.  

3. The Basic Concepts 
The ideal vision of a distributed system is to have 
middleware facilities that give clients the illusion 
that all the compute and storage resources needed 
for their jobs are running on their local system.  
This implies that a client only logs in and gets 
authenticated once, and that some middleware 
software figures out where are the most efficient 
locations to move data to, to run the job, and to 
store the results in.  The middleware software plans 
the execution, reserves compute and storage 
resources, executes the request, and monitors the 
progress.  The traditional emphasis is on sharing 
large compute resource facilities, sending jobs to be 
executed at remote computational sites.  However, 
very large jobs are often “data intensive”, and in 
such cases it may be necessary to move the job to 

where the data sites are in order to achieve better 
efficiency.  Alternatively, partial replication of the 
data can be performed ahead of time to sites where 
the computation will take place.  Thus, it is 
necessary to also support applications that produce 
and consume large volumes of data.  In reality, most 
large jobs in the scientific domain involve the 
generation of large datasets, the consumption of 
large datasets, or both.  Therefore, it is essential that 
software systems exist that can provide space 
reservation and schedule the execution of large file 
transfer requests into the reserved spaces.  Storage 
Resource Managers (SRMs) are designed to fill this 
gap. 
In addition to storage resources, SRMs also need to 
be concerned with the data resource (or files that 
hold the data).  A data resource is a chunk of data 
that can be shared by more than one client.  In many 
applications, the granularity of a data resource is a 
file.  It is typical in such applications that tens to 
hundreds of clients are interested in the same subset 
of files when they perform data analysis. Thus, the 
management of shared files on a shared storage 
resource is also an important aspect of SRMs.  The 
decision of which files to keep in the storage 
resource is dependent on the cost of bringing files 
from remote systems, the size of the file, and the 
usage level of that file.  The role of the SRM is to 
manage the space under its control in a way that is 
most cost beneficial to the community of clients it 
serves.   
In general, an SRM can be defined as a middleware 
component that manages the dynamic use and 
content of a storage resource in a distributed system.  
This means that space can be allocated dynamically 
to a client, and that the decision of which files to 
keep in the storage space is controlled dynamically 
by the SRM.  The main concepts of SRMs are 
described in [SSG02] and subsequently in more 
detail in a book chapter [SSG03]. The concept of a 
storage resource is flexible: an SRM could be 
managing a disk cache, or a hierarchical tape 
archiving system, or a combination of these.  In 
what follows, they are referred to as “storage 
components”. When an SRM at a site manages 
multiple storage resources, it may have the 
flexibility to store each file at any of the physical 
storage systems it manages or even to replicate the 
files in several storage components at that site.  The 
SRMs do not perform file transfer, but rather 
cooperate with file transfer services, such as 
GridFTP, to get files in/out of their storage systems.  
Some SRMs also provide access to their files 
through Posix or similar interfaces. Figure 1 shows 
a schematic diagram of the SRM concepts as well as 



the storage systems and institutions that developed 
them for v2.2, described in this paper. 
SRMs are designed to provide the following main 
capabilities: 
1) Non-interference with local policies.  Each 

storage resource can be managed independently 
of other storage resources.  Thus, each site can 
have its own policy on which files to keep in its 
storage resource and for how long.  The SRM 
will not interfere with the enforcement of local 
policies. Resource monitoring of both space 
usage and file sharing is needed in order to 
profile the effectiveness of the local policies. 

2) Pinning files.  Files residing in one storage 
system can be temporarily locked in on-line 
cache before being removed for resource usage 
optimization or transferred to another system that 
needs them, while used by an application. We 
refer to this capability as pinning a file, since a 
pin is a lock with a lifetime associated with it.  A 
pinned file can be actively released by a client, 
in which case the space occupied by the file is 
made available to the client.  SRMs can choose 
to keep or remove a released file depending on 
their storage management needs, 

3) Advance space reservations.  SRMs are 
components that manage the storage content 
dynamically.  Therefore, they can be used to plan 
the storage system usage by permitting advance 
space reservations by clients. 

4) Dynamic space management.  Managing shared 
disk space usage dynamically is essential in 
order to avoid clogging of storage resources. 
SRMs use file replacement policies whose goal 

is to optimize service and space usage based on 
access patterns. 

5) Support abstract concept of a file name.  SRMs 
provide an abstraction of the file namespace 
using “Site URLs” (SURLs), while the files can 
reside in any one or more of the underlying 
storage components.  An example of an SURL 
is: srm://ibm.cnaf.infn.it:8444/dteam/test.10193, 
where the first part “ibm.cnaf.infn.it:8444” is the 
address and port of the machine where the SRM 
resides, and the second part “/dteam/test.10193” 
is the abstract file path, referred to as the Site 
File Name (SFN). 

6) Temporary assignment of transfer file names.  
When requesting a file from an SRM, an SURL 
(see above) is provided.  The SRM can have the 
file in several locations, or can bring it from tape 
to disk for access.  Once this is done a “Transfer 
URL” (TURL) is returned for a temporary access 
to the file controlled by the pinning lifetime.  A 
similar capability exists when a client wishes to 
put a file into the SRM.  The request provides 
the desired SURL for the file, and the SRM 
returns a TURL for the transfer of the file into 
the SRM.  A TURL must have a valid transfer 
protocol such as: 
gsiftp://ibm139.cnaf.infn.it:2811//gpfs/dteam/test
.10193.  Note that the port 2811 is a GridFTP 
port. 

7) Directory Management and ACLs.  The 
advantage of organizing files into directories is 
well known, of course.  However, SRMs provide 
directory management support to the SURL 
abstractions and keep the mapping to the actual 
files stored in the underlying file systems.  
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Figure 1: Multiple inter-operating SRM implementations. Clients can access different  

mass storage and file systems through a uniform SRM interface 

 



Accordingly, Access Control Lists (ACLs) are 
associated with the SURLs. 

8) Transfer protocol negotiation.  When making a 
request to an SRM, the client needs to end up 
with a protocol for the transfer of the files that 
the storage system supports.  In general, systems 
may be able to support multiple protocols and 
clients should be able to use different protocols 
depending on the system they are running on.  
SRM supports protocol negotiation, by matching 
the highest protocol they can support given an 
ordered list of preferred protocols by the client. 

9) Peer to peer request support.  In addition to 
responding to clients requests, SRMs are 
designed to communicate with each other.  Thus, 
one SRM can be asked to copy files from/to 
another SRM. 

10) Support for multi-file requests.  The ability to 
make a single request to get, put, or copy 
multiple files is essential for practical reasons.  
This requirement is supported by SRMs by 
specifying a set of files. Consequently, such 
requests are asynchronous, and status functions 
need to be provided to find out the progress of 
the requests. 

11) Support abort, suspend, and resume operations.  
These are necessary because requests may be 
running for a long time, in case that a large 
number of files are involved. 

The main challenges for a common interface 
specification are to design the functionality of SRMs 
and their interfaces to achieve the goals stated above, 
and to achieve the interoperation of SRM 
implementations that adhere to the common interface 
specification.  More details of the basic functionality 
can be found in [SSG03].  The specification of SRM 
interfaces and their corresponding WSDL can be 
found at the collaboration web site [srm-collab]. 
The functions supported by SRMs in order to get or 
put files into the SRMs are referred to as 
“srmPrepareToGet” and “srmPrepareToPut”.  A set 
of files (or a directory) is provided in the form of 
SURLs, and TURLs are returned.  The TURLs are 
used by the requesting clients to get or put files 
from/into the SRM using the TURL’s transfer 
protocol.  The function srnCopy provides the 
capability to replicate files from one SRM to another. 
When using the space reservation function 
srmReserveSpace, the client can specify the desired 
space and duration of the reservation.  The SRM 
returns the space and duration  it is willing to allocate 
according to its policies, and a space token.  If the 
client does not wish to accept that, it can issue 

srmReleaseSpace.  Otherwise, it can put files into the 
reserved space by referring to the space token. 
Directory functions are very similar to the familiar 
Unix functions and include srmLs, srmMkdir, 
srmRmdir, srmMv, and srmRm.  Since files may 
have a limited lifetime in the SRM, these functions 
need to reflect lifetime status as well. 

4. Additional concepts introduced with v2.2 
Soon after the WLCG collaboration decided to try 
and adopt version 2.1 of the SRM specification   as a 
standard for all their storage systems, it became clear 
that some concepts needed to be clarified, and 
perhaps new functionality added.  The main issues 
were: 1) the specification of the storage properties; 2) 
the clarification of space and the meaning of a space 
token when it is returned after a space reservation is 
made; and 3) the ability to request that files will be 
brought from archival storage into an online disk 
system for subsequent access.  This led to a new 
SRM specification, referred to as SRM v2.2.  We 
discuss each of these concepts further next. 
Storage component properties 
The issue of how to expose expected behavior of a 
storage component by the SRM was debated at great 
length.  In the end, it was concluded that it is 
sufficient to expose two orthogonal properties: 
Retention Policy and Access Latency. These are 
defined below: 
1) Retention Policy: REPLICA, OUTPUT, 
CUSTODIAL 
The Quality of Retention is a kind of Quality of 
Service. It refers to the probability that the storage 
system loses a file. The type is used to describe the 
retention policy assigned to the files in the storage 
system, at the moment when the files are written into 
the desired destination in the storage system. It is 
used as a property of space allocated through the 
space reservation function. Once the retention policy 
is assigned to a space, the files put in the reserved 
space will automatically be assigned the retention 
policy of the space. The description of Retention 
Policy Types is: 
• REPLICA quality has the highest probability of 

loss, but is appropriate for data that can be 
replaced because other copies can be accessed in 
a timely fashion. 

• OUTPUT quality is an intermediate level and 
refers to the data which can be replaced by 
lengthy or effort-full processes. 

• CUSTODIAL quality provides low probability 
of loss. 

2) Access Latency: ONLINE, NEARLINE 



Files may be Online or Nearline. These terms are 
used to describe how the latency to access a file is 
improvable. Latency is improved by storage systems 
replicating a file such that its access latency is online.  
We do not include here “offline” access latency, 
since a human has to be involved in getting offline 
storage mounted.  For SRMs, one can only specify 
ONLINE and NEARLINE.  The type will be used to 
describe an access latency property that can be 
requested at the time of space reservation. The files 
that are contained in the space may have the same or 
lower access latency as the space. The ONLINE 
cache of a storage system is the part of the storage 
system which provides file access with online 
latencies. The description of Access Latency types is: 
• ONLINE has the lowest latency possible. No 

further latency improvements are applied to 
online files.  

• NEARLINE files can have their latency 
improved to online latency automatically by 
staging the files to online cache. 

Storage Areas and Storage Classes 
Because of fairly complex storage systems used by 
the WLCG collaboration, it was obvious that 
referring to “storage system” is imprecise.  Instead, 
the concept of a “storage area” is used. A storage 
system usually is referred to as a Storage Element, 
viz. a grid element providing storage services. 
A Storage Element can have one or more storage 
areas. Each storage area includes parts of one or more 
hardware components (single disk, RAID, tape, 
DVD, …).  Any combination of components is 
permissible.  A storage area is specified by its 
properties which include the Access Latency and 
Retention Policy described above. Explicitly 
supported combinations are known as Storage 
Classes: online-replica (e.g. a common disk space 
allocated for online access), nearline-custodial (e.g. a 
high-quality robotic tape system), or online-custodial 
(e.g. a highly protected online disk that may keep 
multiple replicas, or an online disk with backup on a 
high-quality robotic tape system).  Storage areas that 
consist of heterogeneous components are referred to 
as “composite storage areas” and the storage space in 
them as “composite space”.   “Composite storage 
elements” are storage elements serving composite 
storage areas. Storage areas can share one or more 
storage components.  This allows storage components 
to be partitioned for use by different user-groups or 
Virtual Organizations (VOs). 
The SRM interface exposes only the storage element 
as a whole and its storage areas, not their 
components.  However, a space reservation to a 
composite storage element can be made requesting 

Access Latency-Retention Policy combinations that 
may determine which storage components are 
assigned.  Specifically, a space reservation to a 
composite storage element can request the following 
combinations to target the online or nearline storage 
components: a) online-replica to target the online 
storage components; b) nearline-custodial to target 
the nearline storage components (assuming they 
support custodial retention policy); c) online-
custodial to target both the online and nearline 
storage components. 
The function srmBringOnline 
When a file is requested from a mass storage system 
(MSS), it is brought onto disk from tape in case that 
the file is not already on disk.  The system determines 
which files to keep on disk, depending on usage 
patterns and system loads.  However, this behavior is 
not always acceptable to large projects, since they 
need to be in control of what is online in order to 
ensure efficient use of computing resources. A user 
performing a large analysis may need to have all the 
files online before starting the analysis.  Similarly, a 
person in charge of a group of analysts may wish to 
bring all the files for that group online for all of them 
to share.  Therefore the concept of bringing files 
online was introduced. 
srmBringOnline can be applied only to a composite 
space that has nearline  as well as online components.  
When performing this function the SRM is in full 
control as to where files end up and this information 
is not visible to the client.  For example, the SRM 
may have multiple online spaces, and it can choose 
which will be used for each file of the request.  
Similarly, the SRM can choose to keep multiple 
online replicas of the same file for transfer efficiency 
purposes.  Once srmBringOnline is performed, 
subsequent srmPrepareToGet requests can be issued 
by clients, and TURLs returned, where each TURL 
indicates where the corresponding file can be 
accessed, and the protocol to be used.   

5.  The Implementation of five SRMs 
In this section we describe briefly implementations of 
five SRM that adhere to the same SRM v2.2 
specification, in order to illustrate the ability of 
SRMs to have the same interface to a variety of 
storage systems.  The underlying storage systems can 
vary from a simple disk, multiple disk pools, mass 
storage systems, parallel file systems, to complex 
multi-component multi-tiered storage systems.  
While the implementations use different approaches, 
we illustrate the power of the SRM standard 
approach in that such systems exhibit a uniform 
interface and can successfully interoperate.  Short 



descriptions of the SRMs implementation are 
presented (in alphabetical order) next. 
BeStMan – Berkeley Storage Manager 
BeStMan is a java-based SRM implementation from 
LBNL. Its modular design allows different types of 
storage systems to be integrated in BeStMan while 
providing the same interface for the clients.  Based 
on immediate needs, two particular storage systems 
are currently used. One supports multiple disks 
accessible from the BeStMan server, and the other is 
the HPSS storage system. Another storage system 
that was adapted with BeStMan is a legacy MSS at 
NCAR in support of the Earth System Grid project 
(www.earthsystemgrid.org). 
Figure 2 shows the design of BeStMan. The Request 
Queue Management accepts the incoming requests. 
The Local Policy Module contains the scheduling 
policy, garbage collection policy, etc. The Network 
Access Management module is responsible for 
accessing files using multiple transfer protocols. An 
in-memory database is provided for storing the 
activities of the server. The Request Processing 
module contacts the policy module to get the next 
request to work on. For each file request, the 
necessary components of the Network Access 
Management module and the Storage Modules (the 
Disk Management and the MSS Access Management 
modules) are invoked to process the data.  

BeStMan supports space management functions and 
data movement functions. Users can reserve space in 
the preferred storage system, and move files in and 
out of their space.  When necessary BeStMan 
interacts with remote storage sites on their behalf, 
e.g. another gsiftp server, or another SRM.  BeStMan 
is expected to replace all currently deployed v1.1 
SRMs from LBNL. 
Castor-SRM 
The SRM implementation for the CERN Advanced 
Storage system (CASTOR) is the result of 

collaboration between Rutherford Appleton 
Laboratory and CERN.  Like that of other 
implementations, the implementation faced unique 
challenges.  These challenges were based around the 
fundamental design concepts under which CASTOR 
operates, which are different from those of other 
mass storage systems.  CASTOR trades some 
flexibility for performance, and this required the 
SRM implementation to have some loss of flexibility, 
but with gains in performance. 
CASTOR is designed to work with a tape back-end 
and is required to optimise data transfer to tape, and 
also to ensure that data input to front-end disk cache 
is as efficient as possible.  It is designed to be used in 
cases where it is essential to accept data at the fastest 
possible rate and have that data securely archived. 
These requirements are what cause differences 
between the CASTOR SRM implementation and 
others.   
The need to efficiently stream to tape and clear disk 
cache for new incoming data leads to two effects: 

• the SURL lifetime is effectively infinite and  
• the TURL, or pinning, lifetime is advisory.  

In fact the latter is merely a modified garbage 
collection algorithm which tries to ensure those files 
with a low weighting are garbage collected first. 
Also, space management in the CASTOR SRM is 

significantly different to those of 
other implementations.  Since the 
design of the MSS is to optimise 
moving data from disk to tape, there 
is no provision for allowing dynamic 
space allocation at a user level.  The 
CASTOR SRM does support space 
reservation, but as an asynchronous 
process involving physical 
reallocation of the underlying disk 
servers.  Other implementation 
designed to work with only disk 
based Mass Storage Systems, or a 
combination of disk and tape, often 
allow for dynamic space reservation. 

The architecture of the CASTOR SRM (Figure 3) 
includes two stateless processes, which interact 
through a RDBMS. A client-facing process (the 
‘server’) directly deals with synchronous requests 
and stores asynchronous requests in the database for 
later processing. The database is therefore used to 
store all storage-oriented requests as well as the 
status of the entire system. A separate process (the 
‘daemon’) faces the CASTOR backend system, and 
updates the status of the ongoing requests, allowing 
for a more fault resilient behaviour in the event the 
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Figure 2: The architecture diagram of BeStMan 



backend system shows some instability, as the clients 
will always be decoupled from the CASTOR 
backend. 
This architecture leverages the existing framework 
that has been designed and developed for the 
CASTOR mass storage system itself [BGP+’07]. The 
entire Entity-Relationship (E-R) schema has been 
designed using the UML methodology, and a 
customized code generation facility, maintained in 
the CASTOR framework, has been used to generate 
the C++ access layer to the database. 
dCache-SRM 
dCache is a  Mass Storage System developed jointly 
by Fermilab and DESY which federates a large 
number of disk systems on heterogeneous server 
nodes to provide a storage service with a unified 
namespace. dCache provides multiple means of file 
access protocols, including FTP, Kerberos GSSFTP, 

GSIFTP, HTTP, and dCap and xRootD,  POSIX 
APIs to dCache. dCache can act as a standalone Disk 
Storage System or as a front-end disk cache in a 
hierarchical storage system backed by a tape interface 
such as OSM, Enstore [enstore], Tsm, HPSS [hpss], 
DMF or Castor [castor]. dCache storage system 
(Figure 4) has a highly scalable distributed 
architecture that allows easy addition of new services 
and data access protocols.  
dCache provides load balancing and replication 
across nodes for “hot” files, i.e. files that are accessed 
often. It also provides a resilient mode, which 
guarantees that a specific number of copies of each 
file are maintained on different hardware. This mode 
can take advantage of otherwise unused and 
unreliable disk space on compute-nodes. This is a 
cost-effective means of storing files robustly and 
maintaining access to them in the face of multiple 

hardware failures.  
The dCache Collaboration 
continuously improves the features 
and the Grid interfaces of dCache. 
It has delivered the gPlazma 
element that implements flexible 
Virtual-Organization (VO)-based 
authorization. DCache’s GridFTP 
and GsiDCap services are 
implementations of the grid aware 
data access protocols. But the most 
important step to connect dCache 
to the Grid was the development of 
the SRM interface.  
 dCache has included an 
implementation of  SRM Version 
1.1 since 2003 and now has all 
protocol elements of SRM v2.2 
required by the WLCG. The new 
SRM functions include space 
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reservation, more advanced data transfer, and new 
namespace and access control functions. 
Implementation of these features required an update 
of the dCache architecture and evolution of the 
services and core components of the dCache Storage 
System. Implementation of SRM Space Reservation 
led to new functionality in the Pool Manager and the 
development of the new Space Manager component 
of dCache, which is responsible for accounting, 
reservation and distribution of the storage space in 
dCache. SRM's new "Bring Online" function, which 
copies tape-backed files to dCache disk, required 
redevelopment of the Pin Manager service, 
responsible for staging files from tape and keeping 
them on disk for the duration of the Online state. The 
new SRM concepts of AccessLatency and 
RetentionPolicy led to the definition of new dCache 
file attributes and new dCache code to implement 
these abstractions. SRM permission management 
functions led to the development of the Access 
Control List support in the new dCache namespace 
service, Chimera 
DPM – Disk Pool Manager 
The DPM (Disk Pool Manager) aims at providing a 
reliable and managed disk storage system for the 
Tier-2 sites. It is part of the EGEE project.  It 
currently supports only disk-based installations. The 
architecture is based on a database and multi-
threaded daemons (see Figure 5): 
• The dpns daemon controls the hierarchical 

namespace, the file permissions and the mapping 

between SFN (Site File Name) and physical 
names; An SFN is the file path portion of an 
SURL. 

• The dpm daemon manages the configuration of 
disk pools and file systems. It automatically 
handles the space management and the 
expiration time of files.  It also processes the 
requests.  

• The SRM (v1.1 and v2.2) daemons distribute the 
SRM requests workload (delete, put, get, etc); 

• The Globus gsiftp daemon provides secure file 
transfers between the DPM disk servers and the 
client; 

• The rfio daemon provides secure POSIX file 
access and manipulation. 

In most cases, all the core daemons are installed on 
the same machine. However for large deployment, 
they can run on separate nodes. 
Although not represented in Figure 5, https and 
xrootd [xrootd] protocols can be used to access data.  
A database backend (both MySQL and Oracle are 
supported) is used as a central information repository. 
It contains two types of information: 
• Data related to the current DPM configuration 

(pool and file system) and the different 
asynchronous requests (get and put) with their 
statuses. This information is accessed only by the 
DPM daemon. The SRM daemons only put the 
asynchronous requests and poll for their statuses.  

• Data related to the 
namespace, file 
permissions (ACLs 
included) and virtual 
IDs which allow a full 
support of the ACLs. 
Each user DN 
(Distinguished Name) 
or VOMS (Virtual 

Organization 
Membership Service) 
attribute is internally 
mapped to an 
automatically allocated 
virtual ID. For instance, 
the user Chloe 
Delaporte who belongs 
to the LHCb group 
could be mapped to the 
virtual UID 1427 and 
virtual GID 54. This 
pair is then used for a 
fast check of the ACLs 
and ownership. This                        

Figure 5: Overview of the DPM architecture 



part is only accessed by the DPNS daemon. 
The GSI (Grid Security Infrastructure) ensures the 
authentication which is done by the first service 
contacted. For instance, if it is an SRM request, then 
the SRM daemon does the authentication. The 
authorization is based on VOMS.  
The load balancing between the different file systems 
and pools is based on the round robin mechanism. 
Different tools have been implemented to enable 
users to manipulate files in a consistent way.  The 
system is rather easy to install and to manage. Very 
little support is needed from the developers’ team. 
The DPM is currently installed at roughly 80 sites. 
For a given instance, the volume of data managed 
ranges from a few TB up to 150 TB of data. So far no 
limit on the volume of data has been reported.  
StoRM - Storage Resource Manager 
StoRM [CCD+’06] (acronym for Storage Resource 
Manager) is an SRM service designed to manage file 
access and space allocation on high performing 
parallel and cluster file systems as well as on 
standard POSIX file systems. It provides the 
advanced SRM management functionalities defined 
by the SRM interface version 2.2 [srm-v22]. The 
StoRM project is the result of the collaboration 
between INFN – the Italian National Institute for 

Nuclear Physics - and the Abdus Salam ICTP for the 
EGRID Project for Economics and Finance research.  
StoRM is designed to respond to a set of requests 
coming from various Grid applications allowing for 
standard POSIX access to files in local environment, 
and leveraging on the capabilities provided by 
modern parallel and cluster file systems such as the 
General Parallel File System (GPFS) from IBM. The 
StoRM service supports guaranteed space reservation 
and direct access (by native POSIX I/O calls) to the 
storage resource, as well as supporting other standard 
Grid file access libraries like RFIO and GFAL.  

More generally, StoRM is able to work on top of any 
standard POSIX file system providing ACL (Access 
Control List) support, like XFS and ext3. Indeed, 
StoRM uses the ACLs provided by the underlying 
file system to implement the security model, allowing 
both Grid and local access. StoRM supports VOMS 
[voms] certificates and has a flexible authorization 
framework based on the interaction with one or more 
external authorization services to verify if the user 
can perform the specified operation on the requested 
resources. 
Figure 6 shows the multilayer architecture of StoRM. 
The are two main components: the frontend, that 
exposes the SRM web service interface and manages 
user authentication, and the backend, that executes all 
SRM functions, manages file and space metadata, 
enforces authorization permissions on files, and 
interacts with file transfer services. StoRM can work 
with several underlying file systems through a plug-
in mechanism that decouples the core logic from the 
specific file system functionalities. The specific file 
system driver is loaded at run time.  
To satisfy the availability and scalability 
requirements coming from different Grid applications 
scenarios, one or more instances of StoRM 
components can be deployed on different machines 
using a centralized database service. Moreover, the 

namespace mechanism adopted by 
StoRM makes it unnecessary to store 
the physical location of every file 
managed in a database. The namespace 
is defined in an XML document that 
describes the different storage 
components managed by the service, 
the storage areas defined by the site 
administrator and the matching rules 
used at runtime to map the logical to 
physical paths. The physical location of 
a file can be derived from the requested 
SURL, the user credentials and the 
configuration information described in 
the XML document.   

 
5. The testing procedure 
An important aspect in the definition of the SRM 
v2.2 protocol is the verification against existing 
implementations.  The verification process has helped 
understanding if foreseen transactions and 
requirements make sense in the real world, and 
identifying possible ambiguities. It uncovered 
problematic behaviors and functional interferences 
early enough in the definition cycle to allow for the 
protocol specification to be adjusted to better match 
existing practices. The verification process has shown 

 
Figure 6:  StoRM Architecture 



if the protocol adapted naturally and efficiently to 
existing storage solutions. In fact, it is crucial that a 
protocol is flexible and does not constrain the basic 
functionality available in existing services. As an 
example we can mention the time at which a SURL 
starts its existence in the namespace of an SRM. 
Implementations like dCache mark a file as existent 
in the namespace as soon as a client starts a transfer 
for the creation of the file. This is to avoid the need 
for cleanup of the name space when the client never 
gets to write the file. Other implementations, instead, 
prefer to reserve the name space entry as soon as 
possible, to present a consistent view to all 
concurrent clients, or to simplify the interfacing with 
the MSS backend. 
The verification process has helped proposing and 
refining a conceptual model behind the protocol, with 
an explicit, clear and concise definition of its 
underlying structural and behavioral concepts. This 
model has made it easier to define the service 
semantics, helped implementation developers, and 
provided for a more rigorous validation of 
implementations. The model is a synthetic 
description of a user’s view of the service, with the 
basic entities (such as space, file,…), their 
relationships, and the changes they may go through.  
The model is described in some details in [DD’07].  
The analysis of the complexity of the SRM interface 
through its formal model shows that a high number of 
tests need to be executed in order to fully check the 
compliance of the implementations to the 
specifications. Therefore, an appropriate testing 
strategy has to be adopted in order to reduce the 
number of tests to be performed to a manageable 
level, while at the same time covering those aspects 
that are deemed to matter in practice.   
Testing activities aim at finding differences between 
the actual and the intended behavior of a system. In 
particular, [MSBT’04] gives the following definition: 
“Testing is the process of executing a program with 
the intent of finding errors.” A test set is defined to 
be exhaustive if and only if it fully describes the 
expected semantics of the specifications, including 
valid and invalid behaviors. 
In order to verify the compliance to a protocol of a 
specific implementation a test-case-design 
methodology known as Black Box testing is often 
used. The Black Box testing technique focuses on 
identifying the subset of all possible test cases with 
the highest probability of detecting the most errors. In 
particular, the most popular black box testing 
approaches are Equivalence partitioning, Boundary 
value analysis, Cause-effect graphing and Error 
guessing [MSBT’04].  Each of these approaches 

covers certain cases and conditions but they do not 
ensure the identification of an exhaustive testing 
suite. 
The black box testing technique has been used to 
design 5 families of tests to verify the available 
implementations of SRM v2.2. Furthermore, many 
hypotheses have been made in order to make the 
model simpler and to reduce the total number of tests, 
while keeping the test sets valid and unbiased. The 5 
families of tests are the following: 
• Availability: the srmPing function and a full put 

cycle for a file is exercised (srmPrepareToPut, 
srmStatusOfPutRequest, file transfer, 
srmPutDone). This family is used to verify 
availability and very basic functionality of an 
SRM endpoint. 

• Basic: the equivalence partitioning and boundary 
condition analysis is applied to verify that an 
implementation satisfies the specification when 
it has a single SRM call active at any given time. 

• Use cases: cause-effect graphing, exceptions, 
functional interference, and use cases extracted 
from the middleware and user applications are 
exercised. 

• Interoperability: remote operations (servers 
acting as clients for some basic SRM functions) 
and cross copy operations among several 
implementations are executed. 

• Stress: the error guessing technique and typical 
stress situations are applied to verify resilience to 
load. 

A specific language, the S2 [MD’07] has been 

adopted for a fast implementation of test cases, and 
the open source implementation is now maintained 
by WLCG. The S2 language has several attractive 
characteristics:  
• It allows for the quick development of test 

programs that exercise a single test case each. 

Figure 7: Availability (in percentage) of SRM 2.2 
endpoints 



 

 

 
 

 
 
• It helps minimize human errors that are typically 

made in writing test cases. 
• It offers an easy way to plug-in external libraries 

such as an SRM client implementation. 
• It offers a powerful engine for parsing the output 

of a test, expressing the pattern to match in a 
compact and fully descriptive way.  

• It offers a testing framework that supports the 
parallel execution of tests where the interactions 
among concurrent method invocations can be 
tested easily. 

• It offers a “self-describing” logging facility that 
makes it possible to automatically publish the 
results of a test. 

The S2 families of tests run automatically 5 times a 
day. The results of the tests are published on a web 
page. In particular, the data of the last run together 
with the history of the results and their details are 
stored and made available to the developers through 
the web. Plots are produced every month on the 
entire period of testing to track the improvements and 
detect possible problems. 
The testbed that we set up includes five different 
implementations: CASTOR, dCache, DPM, 
BeStMan, and StoRM. It currently has 13 available 
endpoints located in Europe and the US. In particular, 
5 endpoints are where the main development 
happens. These endpoints have been tested for a 
period of 7 months. The other endpoints have been 
added recently. They are used to verify that the 
implementation can accommodate different specific 
needs at different sites and help smooth the 
installation and configuration process. 

 
Figure 8: Basic test family: Number of 

failures/Number of tests over time 

 

 
Figure 9: Use-case test family: Number of 

failures/Number of tests over time 

 

 
Figure 10: Interoperability test family: Number of 
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In Figure 7 the availability of the main endpoints 
over the mentioned period of time is shown.  Figures 
8,9,10 show the number of failures over the total 
number of tests executed over time. While for the 
basic and use case families of tests convergence is 
near, we still have to do some work in terms of 
interoperability and cross copy operations. Stress 
testing has just started and some of the available 
endpoints are being equipped with more resources for 
that. The instabilities shown in the results usually are 
caused by service upgrades (to deploy fixes in the 
code) or circumstances where the server is too busy 
serving other requests (when the endpoint is a 
production system not dedicated to tests). 
The 'srmv2Suite' is built as a perl wrapper gluing all 
of the 36 individual test modules - corresponding 
almost one to one to the 38 srmv2.2 methods. Each 
test module is a small C application, and is built on 
top of gSOAP 2.6. It was written mainly to allow 
DPM srmv2.2 implementation, but has also been 
used to crosscheck some features of BeStMan and 
dCache SRM v2.2 front-ends. It is most of the time 
used as a regression test to ease the development 
lifecycle, and new use cases and specific tests are 
added as soon as new features become available on 
the DPM srmv2.2 server. It now includes about 400 
different steps, and runs in about 500 sec. Transfers 
are achieved through Secure Rfio or GridFTP when 
targeting a DPM server, but are switched back to 
GridFTP only when testing some other server. 
Another SRM test program was developed at LBNL, 
is being run several times daily, and the results 
published [srm-tester].  S2 and SRM-tester 
compliment each other in that S2 uses C++ clients 
while SRM-tester used java clients. 

6. Publishing SRMs status information  
Together with the SRM v2.2 protocol and the data 
transfer protocols, an information protocol is needed 
for service discovery and accounting purposes.  In 
service discovery, clients need to check both static 
and dynamic status information. The GLUE schema 
[glue] is used by several national and international 
Grids to provide information services for compute 
and storage resources.  
After analyzing the capabilities offered by the SRM, 
such as the possibility of specifying classes of storage 
and the negotiation of the file access protocol 
between client and server, an extensive discussion 
took place on how much of the configuration 
information specific to a storage service needed to be 
exposed to applications, monitoring and accounting 
facilities. One of the constraints on the schema was 
that it could not assume that all storage will be 
provided through SRM implementations.  For 

example, the schema should allow for a simple 
GridFTP server to be published as a storage service 
with limited capabilities.  Coming up with a flexible 
model that could satisfy all needs turned out to be 
quite complicated. As an example, users are 
interested in the free space for a given storage 
instance. Defining what “free space” means was not 
straightforward. One problem was to avoid double 
counting of storage capacity when a given storage 
component (tape or disk) is shared among multiple 
spaces, e.g. for different virtual organizations, while 
each of the spaces is published separately.  Another 
interesting quantity is the “used space”, for which an 
unambiguous and useful definition is not obvious 
either.  This space could be in use by files, or 
allocated by space reservation methods, part of it 
being potentially available to store new files, or space 
used by files being migrated to tape but available as 
soon as the migration is over.  For certain 
implementations some of these numbers may be 
expensive to keep exact track of.  Finally, the 
proposed information schema for a storage service 
had to be backward compatible with the one used 
before SRM v2.2 was introduced. This forced us to 
make some information unavailable, delaying a more 
adequate description of the resources to the next 
major revision of the schema. 
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Conclusions 
In this paper, we have described the global 
collaboration behind the Storage Resource Manager 
protocol and the definition and validation processes 
for the SRM protocol that derived from it.  We have 
described the key reasons for the success of SRM, 
namely, (a) an open protocol, unencumbered by 
patents or licensing, (b) an open collaboration where 
any institution willing to contribute can join, (c) a 
well establish validation process (d) the existence of 
five interoperating implementations, many of which 
are open source.  We have described how the SRM 
interfaces diverse storage systems to the Grid, from 
single disk over distributed file systems, to multi-
petabyte tape stores. 
The fact that the protocol supports advanced 
capabilities such as dynamic space reservation 
enables advanced Grid clients to make use of these 
capabilities, but since storage systems are diverse, 



implementation support for capabilities must be 
optional.  On the Grid, SRM is complemented by the 
very widely used GLUE information schema, which 
allows clients to discover services supporting the 
right capabilities. 
Finally, we have described how our test collaboration 
has been crucial to the definition of the protocol, its 
validation and the interoperability of the 
implementations, with a range of tests from 
individual functions in the API to whole use cases 
and control flow.   Not only are interoperability 
problems discovered before the users do, thus leading 
to improved perception of the SRM services in the 
users’ view, but the testing also allows advanced but 
optional features to be tested incrementally as they 
become supported by each implementation. 

 
References 
[BGP+’07] O. Bärring, R. Garcia Rioja, G. Lo Presti, 

S. Ponce, G. Taurelli, D. Waldron, CASTOR2: 
design and development of a scalable 
architecture for a hierarchical storage system 
at CERN, submitted to CHEP, 2007. 

[castor] http://castor.web.cern.ch/castor/ 
[CCD+’06] Corso, E. and Cozzini, S. and Donno, F. 

and Ghiselli, A. and Magnoni,, L. and 
Mazzucato, M. and Murri, R. and Ricci, P.P. 
and Stockinger, H. and Terpin, A. and 
Vagnoni, V. and Zappi, R., “StoRM, an SRM 
Implementation for LHC Analysis Farms 
Computing in High Energy Physics”, 
CHEP’06, Feb. 13-17, 2006, Mumbai, India, 
http://indico.cern.ch/contributionDisplay.py?c
ontribId=373&sessionId=13&confId=048. 

[condor] http://www.cs.wisc.edu/condor/ 
[dcache] http://www.dcache.org/ 
[DD’07] A. Domenici, F. Donno, A Model for the 

Storage Resource Manager, International 
Symposium on Grid Computing 2007, 26-29 
March 2007, Academia Sinica, Taipei, Taiwan 

[enstore] http://www-ccf.fnal.gov/enstore/ 
[hpss] http://www.hpss-

collaboration.org/hpss/index.jsp 
[MD’07] J. Mencak, F. Donno, The S2 testing suite, 

http://s-2.sourceforge.net 
[MSBT’04] G. J. Myers, C. Sandler (Revised by), T.  

Badgett (Revised by), T. M. Thomas  (Revised 
by)  The ART of SOFTWARE  TESTING 2  
edition, December 2004. 

[srb] http://www.sdsc.edu/srb/index.php/Main_Page 

[srm-tester] SRM Storage Tests and Monitoring, 
http://datagrid.lbl.gov/ 

[srm-collab] http://sdm.lbl.gov/srm-wg 
[srm-v22] The Storage Resource Manager Interface 

Specification, Version 2.2, April 2007, 
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html 

[SSG02]  Arie Shoshani, Alex Sim, Junmin Gu, 
Storage Resource Managers: Middleware 
Components for Grid Storage, Nineteenth 
IEEE Symposium on Mass Storage Systems, 
2002 

[SSG03] Storage Resource Managers: Essential 
Components for the Grid, Arie Shoshani, 
Alexander Sim, and Junmin Gu, in Grid 
Resource Management: State of the Art and 
Future Trends, Edited by Jarek Nabrzyski, 
Jennifer M. Schopf, Jan weglarz, Kluwer 
Academic Publishers, 2003 

[voms] The Virtual Organization Membership 
Service, 
http://www.globus.org/grid_software/security/
voms.php 

[glue] http://glueschema.forge.cnaf.infn.it/Spec/V13  
[xrootd] http://xrootd.slac.stanford.edu/ 


